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1. Introduction

Sequential Click prediction (Zhang, et al. 2017)

• Goal : Estimating the click-through rate (CTR) of ads with sequential
information

• Modeling sequential dependency between user’s behaviors
→ RNN
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2. Data Analysis on Sequential Dependency

(a) Correlation between
last click dwell time and
current CTR.

(b) CTR right after a
quick back click on the
same ad.

(c) CTR on users’ first
and subsequent
submissions of a certain
type of query.

Figure: Sequential information

• The model have to learn sequential dependency between user
behaviors by itself.
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3. The Proposed Framework

Feature Construction

• Ad features

• User features

• Sequential feature

• We re-organize the input features along with the user dimension.



3. The Proposed Framework

Architecture

Figure: RNN training process with BPTT algorithm. Unfolding step is set to 3 in
this figure.



3. The Proposed Framework

Model

h(t) = f (i(t)UT + h(t − 1)RT ),

y(t) = σ(h(t)VT )

• R : the recurrent connections between h(t − 1) and h(t) ,

• f () : tanh function , σ() : sigmoid

• i(t) : Features correlated to user’s current behavior.

• h(t) : Sequential information of user’s previous behaviors.



3. The Proposed Framework

Learning

• Loss (averaged cross entropy)

L =
1

M

M∑
i=1

(−yi log(pi )− (1− yi )log(1− pi ))

• yi ∈ {0, 1} : labeled sample , pi : the predicted click probability

• Learning Algorithm (Back Propagation Through Time : BPTT)



3. The Proposed Framework

Learning Algorithm(BPTT)

• The gradient of the output layer :

eo(t) = y(t)− l(t)

y(t) : the predicted click prob., l(t) : the binary true label

• The weights(V) between the hidden layer(h(t)) and output (y(t)) :

V(t + 1) = V(t)− α× eo(t)× h(t)

• Gradients of errors :

eh(t) = eo(t)V ∗ (
−→
1 − h(t) ∗ h(t)),

eh(t − τ − 1) = eh(t − τ)R ∗ (
−→
1 − h(t − τ − 1) ∗ h(t − τ − 1)),

τ ∈ [0,T ) and T : # of unfolding steps.



3. The Proposed Framework

Learning Algorithm(BPTT)

• The weight matrix U and the recurrent weights R :

U(t + 1) = U(t)− α[
T−1∑
z=0

eh(t − z)T i(t − z)]

R(t + 1) = R(t)− α[
T−1∑
z=0

eh(t − z)Th(t − z)]



3. The Proposed Framework

Testing process

Figure: RNN testing process with sequential input samples.

• We only record the hidden state of the last test sample.
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4. Experiments

Overall performance

• Data : Logs of search engine for 2 weeks (randomly sample a set of
users)

• Metric
- Area Under ROC Curve (AUC)
- Relative Information Gain (RIG)

Figure: Overall performance of models



4. Experiments

Performance with History

• RNN model performs the best in all settings

• Long sequences help further improve the accuracy of CTR.

Figure: Performance with Long vs. Short History



4. Experiments

Effect of RNN Unfolding Step

• Unfolding 3 steps is the best.

• The backpropagated error vanishes after 3 steps of unfolding.
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